ISSN : 2465-5163 (Print)
ISSN : 2651-2491 (Online)
ISSN : 2465-5163 (Print)
ISSN : 2651-2491 (Online)
Please provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references
Please provide 4 to 6 keywords which can be used for indexing purposes.
Text Formatting
Manuscripts should be submitted in Word.
Acknowledgments of people, grants, funds, etc. should be placed in a separate section on the title page. The names of funding organizations should be written in full.
[1] Name 1, Name 2 and Name 3, Title of article, Journal. Vol.(no.), year, page.
Manuscripts with mathematical content can also be submitted in LaTeX.(For TeXstudio)
\documentclass[b5paper,11pt,twoside]{article}
\usepackage[english,thai]{babel}
\usepackage{amsmath,amssymb,amsthm,latexsym,pifont,mathrsfs}
\usepackage[colorlinks,urlcolor=red]{hyperref}
\usepackage{graphicx}
% font ==============================================================
\usepackage[no-math]{fontspec}
\defaultfontfeatures{Scale=1.4}
\usepackage{xltxtra}
\newfontfamily{\thaifont}{Angsana New}
\newfontfamily{\thaifontsf}{Angsana New}
\usepackage{polyglossia}
\setdefaultlanguage{english}
% line break for Thai language ----------------------------------
\XeTeXlinebreaklocale "th"
\XeTeXlinebreakskip = 0pt plus 1pt
\usepackage{xunicode}
\renewcommand{\theequation}{\thesection.\arabic{equation}}
\newcommand{\Section}[1]{\section{#1}\setcounter{equation}{0}}
% ----------------------------------------------------------------
\pagestyle{plain}
\usepackage[top=1in,bottom=1in,left=1.in,right=0.5in]{geometry}
%Set height of the header
\setlength{\headheight}{0.26in} \setlength{\parindent}{1cm}
% Set vertical distance between the header and the text
\setlength{\headsep}{0.3in}
% THEOREMS -------------------------------------------------------
\theoremstyle{plain} \theoremstyle{definition}
\newtheorem{thm}{Theorem}[section]
\newtheorem{lem}{Lemma}[section]
\newtheorem{ex}{Example}[section]
\newtheorem{nota}{Notation}[section]
\newtheorem{prop}{Proposition}[section]
\newtheorem{defn}{Definition}[section]
\newtheorem{cor}{Corollary}[section]
\newtheorem{rem}{Remark}[section]
\newtheorem{prf}{Proof}[section]
\theoremstyle{remark} \numberwithin{subsection}{section}
\numberwithin{equation}{section} \numberwithin{figure}{section}
% MATH -------------------------------------------------------------------
\newcommand{\N}{{\mathbb{N}}}
\newcommand{\R}{{\mathbb{R}}}
\newcommand{\Z}{{\mathbb{Z}}}
\newcommand{\Q}{{\mathbb{Q}}}
%\newcommand{\C}{{\mathbb{C}}}
\newcommand{\p}{\partial}
\newcommand{\bR}{{\bf R}}
\newcommand{\bC}{{\bf C}}
\newcommand{\bZ}{{\bf Z}}
\newcommand{\bN}{{\bf N}}
\newcommand{\bQ}{{\bf Q}}
\newcommand{\bK}{{\bf K}}
\newcommand{\bI}{{\bf I}}
\newcommand{\bv}{{\bf v}}
\newcommand{\bV}{{\bf V}}
\newcommand{\cF}{{\mathcal F}}
\newcommand{\cA}{{\mathcal A}}
\newcommand{\cB}{{\mathcal B}}
\newcommand{\cC}{{\mathcal C}}
\newcommand{\cL}{{\mathcal L}}
\newcommand{\cX}{{\mathcal X}}
\newcommand{\cY}{{\mathcal Y}}
\newcommand{\cZ}{{\mathcal Z}}
\newcommand{\abs}[1]{\left\vert#1\right\vert}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\seq}[1]{\left<#1\right>}
\newcommand{\norm}[1]{\left\Vert#1\right\Vert}
\newcommand{\essnorm}[1]{\norm{#1}_{\ess}}
\renewcommand{\to}{\longrightarrow}
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%%% Begining of the thesis
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{document}
\thispagestyle{empty}\pagestyle{myheadings} \markboth{ \rm \small{\textcolor[rgb]{1.00,0.00,0.00}{R}ajabhat \textcolor[rgb]{1.00,0.00,0.00}{M}ath. \textcolor[rgb]{1.00,0.00,0.00}{J.}
3(20xx)/ Author1 and Author2}} {\rm {\textcolor[rgb]{0.00,0.25,0.50}{title running head}}}
\setcounter{page}{109}
\noindent{\large{\bf Rajabhat Mathematics Journal (20xx) Vol. xx, xx - xx}}
\hfill[RMJ]
\vspace{0.1cm}
\hrule
\vspace{1mm} \hfill\small ISSN xxxx-xxxx
\vspace{1cm}
\begin{center}
{\Large\bf TITLE}\\
\underline{Author1 and Author2}\\
Address of Authors \\
\end{center}
\begin{abstract}
\indent
\par The paper must have abstract.
\end{abstract}
{\bf $^*$Corresponding Author:} Email\\
{\bf Keyword:} xxxxxx, xxxxxx, \\
\hrule
\setmainfont{Angsana New}
\section{Introduction}
\hskip1cm This is the text of the introduction \cite{1}, \cite{2}, \cite{3}, \cite{1, 2, 3}
\section{Preliminaries}
\hskip 0.8cm Preliminary notes, materials and methods used in the paper.
\begin{rem}\label{remark1} We can easily check the following:
\par $(i)$ If $a,b \in \Bbb R , 0\leq a \leq b \mbox{ and } z_{1} \precsim z_{2} \mbox{ then } az_{1}\precsim bz_{2},\forall z_{1},z_{2}\in \Bbb C.$
\par $(ii)$ $0 \precsim z_{1} \precnsim z_{2} \Rightarrow |z_{1}| < |z_{2}|.$
\par $(iii)$ $z_{1} \precsim z_{2} \mbox{ and } z_{2} \prec z_{3} \Rightarrow z_{1} \prec z_{3}.$
\end{rem}
\begin{equation}\label{GKC}
d(Tx,Ty)\precsim \alpha d(x,Tx)+d(y,Ty),
\end{equation}
for all $x,y \in X$.
\begin{defn}\label{defnGCM} Let $X$ be a nonempty set, a mapping $D:X \times X
\rightarrow \Bbb C$ is called a generalized conplex value metric space if it satisfies the following condition ...
\end{defn}
\begin{ex} Let $X=[0,1]$ and let $D:X\times X \rightarrow \Bbb C$ be the mapping define by for any $x,y \in X$
\begin{displaymath}\begin{cases}
D(x,y)=(x+y)i;x \neq 0 \mbox{ and } y \neq 0\\
D(x,0)=D(0,x)=\frac{x}{2}i
\end{cases}
\end{displaymath}
\end{ex}
\section{Main Results}
\hskip 0.8cm
\begin{prop} Let $X$ be a nonempty set and $D:X\times X \rightarrow \Bbb C$.
\end{prop}
\begin{thm} Let $(X, D)$ be a complete generalized complex value metric space,
\begin{proof}
\end{proof}
\end{thm}
\section{Acknowledgements}
\hskip 0.8cm The auther would like to thank...
\begin{thebibliography}{20}
\bibitem{1} A. Azam,F. Brain and M. Khan, \textbf{ Common fixed point theorems in complex valued metric space. }Numer.Funct.Anal. Optim. 32(3)(2011), 243-253.
\bibitem{2} S. Banach, \textbf{ Sur operations dams les ensembles abstraits et leur application aus equation integral.}Fund. Math. 3(1922), 133-181.
\bibitem{3} Y. Elkouch and E. M. Morhrani, \textbf{ On some fixed point theorem in generalized metric space.}Fixed Point Theory Applications. (2017). Doi 10.1186/s13663-017-0617-9.
\end{thebibliography}
\end{document}